

Aromatic Methoxylation and Hydroxylation by Organometallic High-Valent Nickel Complexes

Wen Zhou,[†] Jason W. Schultz,[†] Nigam P. Rath,[‡] and Liviu M. Mirica^{*,†}

[†]Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States [‡]Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, United States

Supporting Information

ABSTRACT: Herein we report the synthesis and reactivity of several organometallic Ni^{III} complexes stabilized by a modified tetradentate pyridinophane ligand containing one phenyl group. A room temperature stable dicationic Ni^{III}-disolvento complex was also isolated, and the presence of two available cis coordination sites in this complex offers an opportunity to probe the C-heteroatom bond formation reactivity of high-valent Ni centers. Interestingly, the Ni^{III}-dihydroxide and Ni^{III}-dimethoxide species can be synthesized, and they undergo aryl methoxylation and hydroxylation that is favored by addition of oxidant, which also limits the β -hydride elimination side reaction. Overall, these results provide strong evidence for the involvement of high-valent organometallic Ni species, possibly both Ni^{III} and Ni^{IV} species, in oxidatively induced C-heteroatom bond formation reactions.

Hydroxylation and alkoxylation of arenes are important chemical transformations, as phenols, hydroxylated heteroarenes, and aryl ethers appear in many natural products, pharmaceuticals, and materials,¹ yet traditional phenol synthesis generally exhibits limited substrate scope and may require harsh reaction conditions.² Along with the Cu-catalyzed hydroxylation of aryl bromides and iodides,³ the Pd-catalyzed Buchwald-Hartwig coupling reaction provides a direct and convenient method to form new C_{aryl}-O bonds.⁴ However, aryl alkoxylation, especially methoxylation, is still challenging due to a slow reductive elimination step or unwanted β -hydride elimination side reactions.⁵ By comparison, the Ni-promoted aryl hydroxylation/alkoxylation is less developed,⁶ although it is expected that Ni intermediates, including high-valent species, undergo rapid reductive elimination and possibly exhibit limited β hydride elimination.⁷ In addition, the synthesis of phenols via Nicatalyzed hydrogenolysis of aryl ethers was also reported recently.8

More than three decades ago, van Koten et al. have shown that the pincer NCN⁻ ligand can support organometallic Ni^{III} complexes that are surprisingly stable,⁹ as reported also later for a related pincer system.¹⁰ Moreover, Hillhouse et al.¹¹ and recently Zargarian et al.¹² have reported oxidatively induced reductive elimination of ethers from metallacyclic Ni(alkoxo)-(alkyl) and Ni(alkoxo)(aryl) complexes, respectively, however no high-valent Ni species were detected in these cases. Recently, our group has employed the tetradentate ligand N,N'-di-tertbutyl-2,11-diaza[3.3](2,6)-pyridinophane (^{tBu}N4) to isolate organometallic Ni^{III} complexes that undergo C-halide and C-C bond formation reactions and are active catalysts for Kumada and Negishi coupling reactions.¹³ In order to expand the reactivity of such organometallic Ni^{III} centers, we decided to combine the features of the NCN⁻ and ^{tBu}N4 ligands by developing a hybrid ^{tBu}N3C⁻ ligand (Scheme 1). Reported

herein is the synthesis, characterization, and reactivity of a series of (^{fBu}N3C)Ni^{III} complexes, including a RT stable dicationic [(^{fBu}N3C)Ni^{III}(MeCN)₂]²⁺ complex that offers a unique opportunity to study its C–O bond formation reactivity. Importantly, the observed aryl methoxylation and hydroxylation reactions are facilitated by addition of oxidant, suggesting the involvement of Ni^{IV} intermediates. Additional studies suggest the Ni^{III} species exhibit reduced β -hydride elimination reactivity compared to the Ni^{II} analogs, suggesting that high-valent Ni complexes could be employed in a range of oxidatively induced C-heteroatom bond formation reactions.

The Ni^{II} precursor (^{$^{\text{IBu}}$ N3C)Ni^{II}Br (1) was prepared by the oxidative addition of ^{$^{\text{IBu}}$ N3CBr to Ni(COD)₂ in THF at RT (Scheme 1).¹⁴ Complex 1 is paramagnetic with an effective}}

Received:
 April 20, 2015

 Published:
 June 8, 2015

magnetic moment μ_{eff} of 2.94 μ_{B} as determined by the Evans method, suggesting an S = 1 ground state. The single crystal X-ray structure of **1** reveals the ^{fBu}N3C⁻ ligand acts as a tetradentate ligand, which along with one bromide ligand creates an uncommon trigonal bipyramidal Ni^{II} complex (Figure 1, left).

Figure 1. ORTEP representation (50% probability thermal ellipsoids) of **1** (left) and the cation of **2** (right). Selected bond distances (Å), **1**: Ni1–C1, 1.9181(3); Ni1–N1, 1.9660(3); Ni1–N2, 2.3986(3); Ni1–N3, 2.3734(2); Ni1–Br1, 2.4068(2); **2**: Ni1–C1, 1.8872(1); Ni1–N1, 1.9478(1); Ni1–N2, 2.3121(1); Ni1–N3, 2.2913(1); Ni1–Br1, 2.3895(1); Ni1–N4, 2.0089(1).

The Ni1-C1 bond distance of 1.918 Å is shorter than the Ni1-N1 bond distance of 1.966 Å, as expected for the stronger σ donor organic ligand, while the axial Ni-Namine distances are longer at ~2.38 Å. Interestingly, the cyclic voltammetry (CV) of 1 in 0.1 M Bu₄NBF₄/THF reveals an accessible oxidation potential at -0.61 V vs Fc⁺/Fc (Figure S33) that is tentatively assigned to the $Ni^{II/III}$ redox couple. Indeed, 1 can be readily oxidized with various oxidants (CuBr₂, NOBF₄, and FcPF₆) in MeCN at RT to yield stable green products [("BuN3C)Ni^{III}Br-(MeCN)]X (X = Br, BF₄, or PF_6 , Scheme 1). The single crystal X-ray structure of [(^{fBu}N3C)Ni^{III}Br(MeCN)]PF₆, **2**, reveals the Ni^{III} center adopts a distorted octahedral geometry – as expected for a d⁷ ion, with the amine donors in the axial positions. The Ni– ligand bond distances in 2 are all shorter than those in 1, further supporting the formation of a Ni^{III} center (Figure 1).^{9,13} Finally, the CV of **2** in 0.1 M $Bu_4NBF_4/MeCN$ reveals a reversible $Ni^{III/II}$ reduction wave at -0.59 V vs Fc⁺/Fc (Figure S35),¹⁴ similar to that observed for 1.

When 1 is treated with 1 equiv of TlPF₆, the diamagnetic complex $[({}^{tBu}N3C)Ni^{II}(MeCN)_2]PF_6$ (3) could be generated (Scheme 1). The solid state structure of 3 reveals the Ni^{II} center adopts a pseudosquare planar geometry (Figure 2, left), in which the two axial Namine donors coordinate very weakly and that

Figure 2. ORTEP representation (50% probability thermal ellipsoids) of the cations of 3 (left) and 4 (right). Selected bond distances (Å), 3: Ni1–C1, 1.8819(1); Ni1–N1, 1.9152(1); Ni1–N2, 2.5527(1); Ni1–N3, 2.5245(1); Ni1–N4, 1.9413(1); Ni1–N5, 1.8973(1). 4: Ni1–C1, 1.9018(1); Ni1–N1, 1.9287(1); Ni1–N2, 2.2727(1); Ni1–N3, 2.2593(1); Ni1–N4, 2.0045(1); Ni1–N5, 1.9801(1).

may explain why 3 is diamagnetic. However, since the axial amine donors of $^{\rm fBu}N3C^-$ in 3 are optimally positioned to stabilize an octahedral geometry, it is expected that 3 can be easily oxidized despite being a monocationic species. Indeed, its CV in 0.1 M Bu₄NBF₄/MeCN reveals an oxidation potential at -0.61 V vs Fc⁺/Fc that is also assigned to the Ni^{II/III} redox couple (Figure S36).¹⁵ Accordingly, 3 can be oxidized with 1 equiv of NOBF₄, FcPF₆, or AgSbF₆ to generate air-stable green complexes [(^{fBu}N3C)Ni^{III}(MeCN)₂]X₂ (4X₂, X = BF₄, SbF₆, or PF₆, Scheme 1).¹⁴ The solid-state structure of [(^{fBu}N3C)-Ni^{III}(MeCN)₂](PF₆)(SbF₆) reveals the equatorial Ni-ligand bond distances in 4 are slightly longer than those in 3, while the axial Ni-Namine bond distances are significantly shorter than those in 3, as expected for a change in the Ni coordination geometry from pseudosquare planar to distorted octahedral (Figure 2, right).

The Ni^{III} complexes **2** and **4** are paramagnetic and exhibit effective magnetic moments μ_{eff} of 1.68 and 1.71 μ_B at 298 K, corresponding to one unpaired electron. Their EPR spectra (77 K, PrCN glass) reveal rhombic signals with g_{ave} values of 2.145 for **2** and 2.127 for **4**, along with superhyperfine coupling to the two axial N donors (I = 1) observed in the g_z direction (Figure 3). In

Figure 3. Experimental (PrCN, 77 K) and simulated EPR spectra of **2** (left) and **4** (right). The following parameters were used for simulations: **2**, $g_x = 2.272$; $g_y = 2.128$ ($A_{Br} = 26.5$ G); $g_z = 2.035$ ($A_{2N} = 10.0$ G, $A_{Br} = 5.0$ G); **4**, $g_x = 2.236$; $g_y = 2.105$; $g_z = 2.041$ ($A_{2N} = 13.5$ G).

addition, superhyperfine coupling to the Br atom (I = 3/2) is observed for 2 along the g_y and g_z directions. Taken together, the observed structural and EPR parameters for complexes 2 and 4 strongly suggest the presence of a distorted octahedral Ni^{III} d⁷ center with a d_z^2 ground state.^{9,13}

Since the ${}^{tBu}N3C^{-}$ ligand can stabilize a Ni^{III} center with two *cis* coordination sites available for exogenous ligands, we employed 4 to study C-heteroatom bond formation reactions from highvalent Ni complexes. When 4 was reacted with 4 equiv NaOMe in MeCN/MeOH, the red complex (^{tBu}N3C)Ni^{III}(OMe)₂, 5, was obtained (Scheme 2). The identity of 5 was confirmed by a low-resolution X-ray crystal structure that confirms the atom connectivity, the conformation of the ^{tBu}N3C⁻ ligand, and the distorted octahedral geometry of the Ni^{III} center (Figure S4).¹⁴ Its EPR spectrum reveals a rhombic signal and $g_{ave} = 2.192$, along with superhyperfine coupling to the two axial N donors (I = 1)observed in the g_z direction (Figure S5). The coordination environment of the Ni center in 5 is also supported by the ordering of the g_{ave} values: 2.192 for 5 > 2.145 for 2 > 2.127 for 4, as expected when replacing weakly back-bonding MeCN ligands with stronger σ -donor and π -donor bromide or methoxide ligands.

Complex 5 decomposes at RT in THF overnight, and analysis of the reaction mixture by ESI-MS and NMR reveals two major

Scheme 2. Formation and C–O Bond Formation Reactivity of Complexes 5 and 6 under Various Conditions^a

Entry ^a	1 st OR ⁻ add'n (equiv)	[O] ^b (equiv)	2 nd OR ⁻ add'n (equiv)	Time (h)	^{<i>t</i>Bu} N3COR(%)	^{fBu} N3CH (%)
1	4	-	-	12	47	48
2	4	1	-	1	60	37
3	4	3	-	1	64	34
4	-	3	4	1	65	32
5	4	3	4	1	84	14
6	4	3	20	1	91	5
7 °	4	1	-	1	78 ^d	15
8 °	4	3	-	1	81 ^d	17
9°	4	3	20	1	95 ^d	4
10 °	4	-	-	12	32 ^f	51

^{*a*}(a) For entries 1–6, the reactions were performed in THF/MeOH, and NaOMe was used as methoxide source; the yields were determined by GC-MS (ref 12). (b) [O] is PhI(PyOMe)₂OTf₂. (c) Reactions were performed in THF/CD₃OD, and KOCD₃ was used as methoxide source. (d) The product is ^{fBu}N3COCD₃. (e) The reaction was performed in THF/H₂O, and LiOH was used as OH⁻ source. (f) The product is ^{fBu}N3COH.

products, ^{fBu}N3COMe (47% yield) and ^{fBu}N3CH (48% yield) in a ~1:1 ratio (Scheme 2, entry 1). Interestingly, when NaOCD₃ in CD_3OH was used to generate d_6 -5, ^{fBu}N3CD, not ^{fBu}N3CH, was observed by GC-MS, suggesting that its formation involves β hydride elimination from a (^{tBu}N3C)Ni(OMe) intermediate. Moreover, the addition of 2 equiv of NaOMe to 3 results in rapid formation of ^{tBu}N3CH in 99% yield, suggesting that a Ni^{II} species $(^{tBu}N3C)Ni^{II}(OMe)$ is more prone to β -hydride elimination. Therefore, the addition of an appropriate oxidant may limit the formation of such Ni^{II} species and the β -hydride elimination side reaction. Indeed, the addition of PhI(PyOMe)₂OTf₂, an oxidant used recently by Ritter et al. in Ni-mediated C-F bond formation,¹⁶ improved the yield of ^{tBu}N3COMe to 60% and 64% when 1 or 3 equiv of oxidant was added, respectively (Scheme 2, entries 2 and 4). While the order of oxidant and OMe⁻ addition does not affect the product yields (Scheme 2, entries 3 and 4), the addition of excess OMe⁻ (4 or 20 equiv) in the presence of 3 equiv of oxidant increases the ^{*t*Bu}N3COMe yield to 84% and 91% (Scheme 2, entries 5 and 6).¹⁷ In addition, presence of both excess oxidant and methoxide dramatically reduces the extent of β -hydride elimination down to 5% tBu N3CH. Since D atoms are expected to undergo β -hydride elimination slower than H atoms,^{8b,18} the oxidation of in situ generated (^{tBu}N3C)Ni^{III}(OCD₃)₂ with 1 equiv of oxidant led to ^{fBu}N3COCD₃ in 78% yield (Scheme 2, entry 7), while addition of excess OCD_3^- (20 equiv) and 3 equiv of oxidant generated ^{tBu}N3COCD₃ in an excellent 95% yield (Scheme 2, entry 9). Overall, these results strongly suggest that high-valent $\mathrm{Ni}^{\mathrm{III}}$ species exhibit limited β -hydride elimination vs the Ni^{II} analogs and are also capable of efficient oxidatively induced C-O bond formation reactivity, thus making them viable reactive intermediates in Ni-catalyzed C-heteroatom bond formation reactions.

In addition to aryl methoxylation, the hydroxylation of the $^{tBu}N3C^-$ ligand was also investigated. When 4 was reacted with 4 equiv of LiOH in THF/H2O, a red complex assigned as $(^{t\overline{b}u}N3C)Ni^{III}(OH)_2$, 6, was prepared in situ (Scheme 2). Its EPR spectrum reveals a rhombic signal and $g_{ave} = 2.186$, along with superhyperfine coupling to the two axial N donors (I = 1)observed in the g_z direction (Figure S6), which is similar to the EPR spectrum of S.¹⁴ Complex 6 decomposes at RT to generate two major products, ^{fBu}N3COH and ^{fBu}N3CH, in 32% and 51% yields, respectively (Scheme 2, entry 10). The increased yield of ^{tBu}N3CH vs ^{tBu}N3COH is likely due to ligand protonation in the presence of water, as shown independently for 1 that generates $^{\overline{tBu}}$ N3CH in the presence of H₂O. While we could not improve the ^{tBu}N3COH yield due to the limited solubility of the oxidant in THF/H₂O, these results suggest aryl hydroxylation can also occur from a Ni^{III} center. Interestingly, when the reaction of 4 with excess LiOH was monitored by EPR, a new transient signal $(g_{\perp} = 2.094, g_{\parallel} = 2.005)$ was observed upon decomposition of **6** that reaches its maximum intensity in \sim 70 min and then disappears in ~3 h.¹⁴ This inverted axial EPR spectrum suggests a Ni^{III} species with a $d_{x^2-y^2}$ ground state,^{9b,c,19} and we tentatively propose the formation of a five-coordinate Ni^{III} species with trigonal symmetry or an intermediate with a third OH⁻ coordinated to the Ni^{III} center (see below).

Given that the C-O bond formation reactivity of the Ni^{III} complex 5 is favored by addition of the PhI(PyOMe)₂OTf₂ oxidant, the possible formation of a Ni^{IV} intermediate can be invoked. Recently, Sanford et al. have elegantly shown the isolation of organometallic Ni^{IV} complexes that undergo various C-C and C-heteroatom reductive elimination reactions.^{7c} In our case, the CV of 5 in MeCN reveals an irreversible oxidation wave at 0.55 V vs Fc⁺/Fc, which is tentatively assigned to the $\mathrm{Ni}^{\mathrm{III/IV}}$ redox couple (Figure S38). While this oxidation potential should be easily accessed by PhI(PyOMe)2(OTf)2,16 no Ni^{IV} species was observed when 5 (or 6) was reacted with PhI- $(PyOMe)_2OTf_2$, suggesting that the corresponding Ni^{IV} species is too unstable to be observed and rapidly undergoes reductive elimination. By comparison, when 3 was reacted with PhI-(PyOMe)₂OTf₂, only the corresponding Ni^{III} species 4 was observed, while the reaction of isolated 4 with 1 equiv of PhI(PyOMe)₂OTf₂ leads to no further oxidation. Importantly, the addition to 5 of milder oxidants such as Fc⁺ did not increase the reaction rate or the yield of ${\rm ^{tBu}N3COMe},$ suggesting that the role of the PhI(PyOMe)2OTf2 oxidant is not merely to circumvent the reduction of the Ni^{III} center.¹

Based on the results above, a mechanism involving Ni^{III} disproportionation and a possible Ni^{IV} intermediate^{7c} is proposed (Scheme 3). Since the presence of excess OMe⁻ improves the yield of ^{tBu}N3COMe, an intermediate 7 with a third OR⁻ coordinated to the Ni^{III} center may form, corresponding to the transient EPR signal observed during the decomposition of 6. Such a tris-alkoxide Ni^{III} intermediate could be easily oxidized by PhI(PyOMe)₂OTf₂ to generate the Ni^{IV} intermediate 8 that is expected to undergo rapid C–O reductive elimination to generate ^{tBu}N3COR. In the absence of the oxidant, either a slow C–O reductive elimination may occur from the Ni^{III} center, similar to the proposed C–C bond formation in Nicatalyzed cross-coupling reactions,²⁰ or two molecules of (^{tBu}N3C)Ni^{III}(OR)₂ (i.e., 5 or 6) could undergo a slow disproportionation reaction along with OR⁻ group transfer to

Scheme 3. Proposed Mechanisms Leading to Oxidatively Induced C–O Bond formation

generate intermediate 8 and 9, which will ultimately generate ^{tBu}N3COR and ^{tBu}N3CH in a ~1:1 ratio, as observed experimentally (Scheme 2). The presence of excess oxidant and OR⁻ can also promote a rapid oxidation of 9 to generate 5/6 and thus suppress the formation of the ^{tBu}N3CH side product. Overall, since only a strong oxidant, not Fc⁺, increases the reaction rate and ^{tBu}N3COMe yield from 5, a mechanism involving a transient Ni^{IV} intermediate is more likely.

In conclusion, the use of a newly developed tetradentate pyridinophane ^{tBu}N3C⁻ ligand has allowed the isolation and characterization of several organometallic Ni^{III} complexes. In particular, the $[(^{fBu}N3C)Ni^{III}(MeCN)_2]^{2+}$ disolvento complex with two available *cis* coordination sites enabled the generation of organometallic Ni^{III}-dimethoxide and Ni^{III}-dihydroxide species that were shown to undergo aryl methoxylation and hydroxylation, respectively. Importantly, this C-O bond formation reactivity is promoted by addition of an oxidant, which also limits the β -hydride elimination side reaction. Overall, these results suggest that high-valent Ni complexes are viable intermediates in Ni-catalyzed aryl hydroxylation and methoxylation reactions. Future research efforts are aimed toward the development of catalytic applications for these high-valent organometallic Ni species and possibly the detection and isolation of Ni^{IV} intermediates.

ASSOCIATED CONTENT

S Supporting Information

Synthetic details, spectroscopic characterization, reactivity studies, and crystallographic data. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b04082.

AUTHOR INFORMATION

Corresponding Author

*mirica@wustl.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank National Science Foundation (CHE1255424) for support.

REFERENCES

(1) (a) Tyman, J. H. P. Synthetic and Natural Phenols; Elsevier: Amsterdam, The Netherlands, 1996. (b) Elias, H.-G. An Introduction to Polymer Science; Wiley-VCH: Weinheim, Germany, 1997.

(2) Smith, M. B.; March, J. March's Advanced Organic Chemistry; 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2007.

(3) (a) Alonso, D. A.; Najera, C.; Pastor, I. M.; Yus, M. *Chem.—Eur. J.* **2010**, *16*, 5274. (b) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. *Angew. Chem., Int. Ed.* **2009**, *48*, 8725.

(4) (a) Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787. (b) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224. (c) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (d) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912.

(5) (a) Vorogushin, A. V.; Huang, X. H.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 8146. (b) Gowrisankar, S.; Neumann, H.; Beller, M. Chem.—Eur. J. 2012, 18, 2498.

(6) (a) Mann, G.; Hartwig, J. F. J. Org. Chem. **1997**, 62, 5413. (b) Honda, K.; Cho, J.; Matsumoto, T.; Roh, J.; Furutachi, H.; Tosha, T.; Kubo, M.; Fujinami, S.; Ogura, T.; Kitagawa, T.; Suzuki, M. Angew. Chem., Int. Ed. **2009**, 48, 3304.

(7) (a) Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. *Science* **2014**, *345*, 437. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. *Science* **2014**, *345*, 433. (c) Camasso, N. M.; Sanford, M. S. *Science* **2015**, *347*, 1218.

(8) (a) Sergeev, A. G.; Hartwig, J. F. Science **2011**, 332, 439. (b) Kelley, P.; Lin, S. B.; Edouard, G.; Day, M. W.; Agapie, T. *J. Am. Chem. Soc.* **2012**, 134, 5480.

(9) (a) Grove, D. M.; van Koten, G.; Zoet, R.; Murrall, N. W.; Welch, A. J. J. Am. Chem. Soc. **1983**, 105, 1379. (b) Grove, D. M.; Van Koten, G.; Mul, P.; Van der Zeijden, A. A. H.; Terheijden, J.; Zoutberg, M. C.; Stam, C. H. Organometallics **1986**, 5, 322. (c) van de Kuil, L. A.; Veldhuizen, Y. S. J.; Grove, D. M.; Zwikker, J. W.; Jenneskens, L. W.; Drenth, W.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. J. Organomet. Chem. **1995**, 488, 191. (d) Grove, D. M.; van Koten, G.; Mul, P.; Zoet, R.; van der Linden, J. G. M.; Legters, J.; Schmitz, J. E. J.; Murrall, N. W.; Welch, A. J. Inorg. Chem. **1988**, 27, 2466.

(10) Spasyuk, D. M.; Zargarian, D.; van der Est, A. Organometallics 2009, 28, 6531.

(11) (a) Matsunaga, P. T.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. **1993**, 115, 2075. (b) Matsunaga, P. T.; Mavropoulos, J. C.; Hillhouse, G. L. Polyhedron **1995**, 14, 175. (c) Koo, K. M.; Hillhouse, G. L.; Rheingold, A. L. Organometallics **1995**, 14, 456. (d) Han, R. Y.; Hillhouse, G. L. J. Am. Chem. Soc. **1997**, 119, 8135.

(12) Cloutier, J. P.; Vabre, B.; Moungang-Soume, B.; Zargarian, D. Organometallics **2015**, *34*, 133.

(13) Zheng, B.; Tang, F.; Luo, J.; Schultz, J. W.; Rath, N. P.; Mirica, L. M. J. Am. Chem. Soc. 2014, 136, 6499.

(14) See Supporting Information.

(15) The CV of **1** in MeCN shows a more reversible redox behavior similar to **3**, indicating that MeCN likely coordinates to the Ni center and possibly replaces the bromide ligand in solution (Figure S33). In addition, the NMR of **1** in MeCN reveals the presence of a diamagnetic species, further suggesting solvent coordination to the Ni center (Figure S3).

(16) (a) Weiss, R.; Seubert, J. Angew. Chem., Int. Ed. 1994, 33, 891.

(b) Lee, E.; Hooker, J. M.; Ritter, T. *J. Am. Chem. Soc.* **2012**, *134*, 17456. (17) Addition of radicals traps such as DMPO and TEMPO did not affect the ^{fBu}N3COMe yield, suggesting that a radical mechanism is unlikely.

(18) Gomez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857.

(19) Iluc, V. M.; Miller, A. J. M.; Anderson, J. S.; Monreal, M. J.; Mehn, M. P.; Hillhouse, G. L. *J. Am. Chem. Soc.* **2011**, *133*, 13055.

(20) (a) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc. **2013**, 135, 12004. (b) Breitenfeld, J.; Wodrich, M. D.; Hu, X. Organometallics **2014**, 33, 5708.